
Data Sheet

A Quick Technical
Guide to Delta Lake
Key Features like ACID
Transactions & Time
Travel in Databricks
Explained

5201 GREAT AMERICAN PARKWAY, SUITE 320
SANTA CLARA, CA 95054

Tel: (855) 695-8636
E-mail: info@lumendata.com

Website: www.lumendata.com

https://lumendata.com/


Understanding Delta Lake

1. ACID Transactions in Delta Lake 

Maintaining data integrity and reliability while enabling complex operations
doesn’t have to be a daunting task! Delta Lake - an open-source storage layer
brings ACID (Atomicity, Consistency, Isolation, Durability) transactions to Apache
Spark and big data workloads.

Leveraging Delta Lake's ACID transactions and Time Travel capabilities in
Databricks helps solve challenges like corrupted or unreliable data and prevents
financial losses and customer dissatisfaction caused by fraudulent transactions.
Your organization gains a significant edge in managing data lakes. 

With Delta Lake, you get the capabilities that were previously only available in
traditional data warehouses, but with the flexibility and scalability of modern
cloud-based architectures.

Delta Lake is a storage layer that sits atop existing data lakes. It provides ACID transactions,
scalable metadata handling, and unifies streaming and batch data processing.

Key Features:
 ACID Transactions1.
 Scalable Metadata Handling2.
 Time Travel (Data Versioning)3.
 Schema Enforcement and Evolution4.
 Audit History5.

We’ll dig into all the features one by one. 

What is it: ACID properties ensure data reliability and consistency: must-haves for
production environments! 

How Delta Lake implements each ACID property

a) Atomicity: All changes within a transaction are treated as a single operation. Either all
changes are committed, or none are.

Example: Updating and deleting data atomically

01

A Quick Technical Guide to Delta Lake



02

A Quick Technical Guide to Delta Lake

Explanation:
We create a Delta table with 'id' and 'square' columns.
The ‘update and delete’ function defines two operations: updating even-
numbered rows and deleting rows where 'square' > 50.
If any part of the transaction fails, the entire operation is rolled back,
maintaining data consistency.



03

A Quick Technical Guide to Delta Lake

b) Consistency: A transaction log is maintained that tracks all changes, ensuring the data
remains in a consistent state.

c) Isolation: Optimistic concurrency control is used to handle multiple concurrent reads and
writes.

Example of handling concurrent writes

d) Durability: All committed changes immediately persisted and survive system failures.

2. Scalable Metadata Handling
Traditional data lakes often struggle with managing the metadata (information about your
data) associated with petabyte-scale datasets. 



04

A Quick Technical Guide to Delta Lake

How Delta Lake’s scalable metadata handling is beneficial:
Delta Lake distributes and optimizes metadata management to enable fast read and
write operations even for petabyte-scale data.
The transaction log serves as the backbone for Time Travel functionality. Delta Lake can
quickly access historical versions of your data by leveraging this readily available
metadata.
By pruning unnecessary data from the transaction log, Delta Lake minimizes storage
requirements for metadata management.

Example: Handling many small files

3. Time Travel (Data Versioning)
Delta Lake's time travel functionality, achieved through versioning, simplifies building data
pipelines. 

Best advantages: 
Version control allows you to easily track changes made to your data over time. 
In case of bad writes or deletes, you can seamlessly revert to a previous version. 
Version control enables you to reproduce experiments and reports with ease. 

Explanation:
We create a DataFrame with 10k rows and partition it into 1000 small files.
Delta Lake efficiently handles the metadata for these numerous partitions.
When querying, Delta Lake's metadata handling allows for efficient partition
pruning, reading only the relevant partitions.



05

A Quick Technical Guide to Delta Lake

Delta Lake allows you to establish a central repository for your big data within your
cloud storage. 

Example: Querying different versions of a Delta table

4. Schema Enforcement and Evolution
Delta Lake offers two complementary features that guarantee data quality and
manageability within your data lake:

Schema Enforcement: Enforces a predefined schema on data written to Delta tables,
ensuring data consistency and integrity. 

Explanation:
We create a Delta table and perform an update operation, creating two
versions.
We can query the current version (implicitly) and the previous version using
‘versionAsOf’.
The ‘history()’ method shows the full history of changes to the table.



06

A Quick Technical Guide to Delta Lake

Schema Evolution: Schema evolution provides controlled flexibility for adding new
columns to adapt to evolving data needs while maintaining existing data integrity.

Example: Enforcing and evolving schema

Explanation:
Create a Delta table with an initial schema.
Attempting to write data with an incompatible schema fails, demonstrating
schema enforcement.
Schema evolution is activated by adding .option('mergeSchema', 'true')
After schema evolution, we can successfully append data with the new
schema.



07

A Quick Technical Guide to Delta Lake

5. Audit History/Audit Logs
Delta Lake in Databricks automatically tracks changes made to your data through table
versions. Each write operation (inserts, updates, deletes) creates a new version.

Audit & Rollback: Table history enables us to audit data changes and rollback errors by
tracking operations and timestamps. 
Time Travel: Analyze your data at any point in time by querying specific versions.

Example: Examining table changes

Explanation:
We created a Delta table and performed various operations (update, delete,
insert).
The ‘history()’ method provides a detailed audit trail of all operations.
We can examine specific versions to get detailed metrics about each
operation.



08

A Quick Technical Guide to Delta Lake

Delta Lake vs Other Tools
 a) Comparison with Hive Tables:

Hive tables lack ACID properties for file-based tables.
Delta Lake provides both ACID transactions and time travel.

b) Comparison with Parquet:
Parquet files are immutable. Updates and deletes become challenging.
Delta Lake allows for easy updates, deletes, and merges while maintaining good read
performance.

c) Comparison with traditional data warehouses:
Delta Lake brings data warehouse-like capabilities to data lakes, allowing for both
structured and unstructured data.
It provides better scalability and cost-effectiveness compared to traditional data
warehouses.



info@lumendata.com lumendata.com/contact-us
Get in touch with us: Let us know what you need:

About LumenData
LumenData is a leading provider of Enterprise Data Management, Cloud & Analytics
solutions. We help businesses navigate their data visualization and analytics anxieties
and enable them to accelerate their innovation journeys.
Founded in 2008, with locations in multiple countries, LumenData is privileged to serve
over 100 leading companies. LumenData is SOC2 certified and has instituted extensive
controls to protect client data, including adherence to GDPR and CCPA regulations.

Authors

Ritesh Chidrewar
Senior Consultant

https://twitter.com/i/flow/login?redirect_after_login=%2FLumenData
https://in.linkedin.com/company/lumendata
https://lumendata.com/contact-us/

